- 目錄
第1篇 梯形的面積評(píng)課稿
梯形的面積評(píng)課稿
我聽(tīng)過(guò)白老師的幾節(jié)課,白老師教的梯形的面積一課,再次給我留下了深刻的印象,感受最深的有以下幾點(diǎn):
一、教學(xué)環(huán)節(jié)設(shè)計(jì)精巧
新課伊始,白老師從三峽大壩的橫切面導(dǎo)入新課,引導(dǎo)學(xué)生用學(xué)過(guò)的知識(shí)推導(dǎo)梯形面積的計(jì)算公式,梯形面積公式的推導(dǎo)是在平行四邊形、三角形面積計(jì)算公式的基礎(chǔ)上進(jìn)行的,學(xué)生有了運(yùn)用轉(zhuǎn)化方法解決問(wèn)題的基礎(chǔ)。因而老師直接把這一問(wèn)題拋給學(xué)生,讓學(xué)生在具體、現(xiàn)實(shí)的問(wèn)題情境中自主探索、交流、討論、,然后讓學(xué)生展示多種方法的推導(dǎo)過(guò)程,融合學(xué)生的智慧,使學(xué)生積極思維的火花在課上得以碰撞,從而歸納出梯形面積計(jì)算公式,這樣的.面積公式教學(xué)不僅讓學(xué)生知其然,而且知其所以然,既有積極的情感體驗(yàn),又能引導(dǎo)學(xué)生創(chuàng)造性地解決問(wèn)題。
二、課上注重學(xué)生活動(dòng)
這節(jié)課白老師從準(zhǔn)備,誘發(fā)、釋疑,轉(zhuǎn)化、到總結(jié)各個(gè)環(huán)節(jié),充分發(fā)揮學(xué)生的主觀能動(dòng)性,積極誘導(dǎo)學(xué)生主動(dòng)探索新知。通過(guò)動(dòng)手嘗試、觀察、討論、交流、讓學(xué)生在探究過(guò)程中充分張揚(yáng)個(gè)性,在群體互動(dòng)中體驗(yàn)成功的喜悅。本節(jié)課一系列活動(dòng)的設(shè)計(jì)讓學(xué)生用眼看,用手做,用耳聽(tīng)、用嘴說(shuō)、用腦想有充足的時(shí)間和空間,讓學(xué)生盡情表現(xiàn),發(fā)現(xiàn)自己,在親自實(shí)踐中理解,認(rèn)識(shí)新知,使學(xué)生的知識(shí)、情感、能力在探索過(guò)程中得到和諧的發(fā)展。
三、教師的角色
新課程背景下教師的作用是指導(dǎo)、參與、這一作用在本節(jié)課上得到了充分的體現(xiàn)。對(duì)學(xué)生計(jì)算時(shí)的書(shū)寫(xiě)及單位名稱等問(wèn)題教師也予以指導(dǎo),這些都體現(xiàn)出老師教學(xué)的細(xì)致和務(wù)實(shí)。
第2篇 梯形的認(rèn)識(shí)的評(píng)課稿
梯形的認(rèn)識(shí)的評(píng)課稿
以往聽(tīng)《平行四邊形的認(rèn)識(shí)》一課,覺(jué)得內(nèi)容簡(jiǎn)單,沒(méi)有新鮮感。今天陳老師的《平行四邊形的認(rèn)識(shí)》聽(tīng)后給人眼前一亮的感覺(jué)。本節(jié)課的最大看點(diǎn)就在于,教師能夠站在知識(shí)系統(tǒng)的高度把握教材,處理教學(xué)內(nèi)容。梯形是特殊的四邊形,是不同于平行四邊形的“只有一組對(duì)邊平行”的四邊形。教師緊緊抓住梯形的本質(zhì)特征設(shè)計(jì)了教學(xué)的全過(guò)程。
首先,學(xué)生在猜測(cè)中進(jìn)入新課。教師巧妙地設(shè)計(jì)了猜圖的游戲。學(xué)生根據(jù)已經(jīng)學(xué)過(guò)的平面圖形的特征猜圖,前邊幾個(gè)猜得又快又準(zhǔn),后邊的怎么猜不對(duì)了?原來(lái),“都是梯形惹的禍”。猜圖情境的`創(chuàng)設(shè),既復(fù)習(xí)了已學(xué)圖形的特征,為學(xué)生獨(dú)立探究梯形的特征搭設(shè)了腳手架,又喚起了學(xué)生對(duì)梯形的好奇,學(xué)生在愉悅的心境下帶著強(qiáng)烈的好奇開(kāi)始了新課的學(xué)習(xí)。
然后,學(xué)生在比較中建立概念。學(xué)生在教師探究提示的引導(dǎo)下,通過(guò)將梯形與所學(xué)過(guò)的長(zhǎng)方形、正方形、平行四邊形、三角形一一比較,從梯形是四邊形——是“一組對(duì)邊平行”的四邊形——是“只有一組對(duì)邊平行”的四邊形,學(xué)生在對(duì)話、修正、完善的過(guò)程中建立了梯形的概念,形成了對(duì)梯形的全面認(rèn)識(shí)。
接著,學(xué)生在操作中鞏固概念、拓展概念的外延。教師沒(méi)有停留在讓學(xué)生利用概念辨認(rèn)梯形的層面,而是讓學(xué)生一刀在一個(gè)直角三角形上剪出一個(gè)梯形、在一個(gè)不規(guī)則的四邊形上剪出一個(gè)梯形,第一次操作,剪出了一個(gè)直角梯形,第二次操作剪出了一個(gè)等腰梯形。既鞏固了梯形的概念,又巧妙地引出了直角梯形、等腰梯形,還培養(yǎng)了學(xué)生科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
最后,學(xué)生在分類(lèi)中建構(gòu)概念。教師讓學(xué)生把所學(xué)過(guò)的平面圖形利用不同的標(biāo)準(zhǔn)分類(lèi),學(xué)生既利用了梯形與其它四邊形的區(qū)別進(jìn)一步鞏固了梯形的特征,又將所學(xué)過(guò)的平面圖形的知識(shí)進(jìn)行了整理,建構(gòu)了平面圖形的知識(shí)體系。
總之,教師站在知識(shí)系統(tǒng)的高度,利用學(xué)生已有的知識(shí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷了猜測(cè)、推理,觀察、比較,操作、內(nèi)化,對(duì)話、分享的過(guò)程,學(xué)生不僅獲得了對(duì)梯形特征的認(rèn)識(shí),還獲得了數(shù)學(xué)學(xué)習(xí)的方法,積累了數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體驗(yàn)了數(shù)學(xué)學(xué)習(xí)過(guò)程的有趣。
第3篇 曲邊梯形的面積評(píng)課稿
曲邊梯形的面積評(píng)課稿范文
怎樣使學(xué)生的理解并掌握嚴(yán)格化的數(shù)學(xué)意義上的求曲邊梯形面積的方法?怎樣在課堂教學(xué)中組織學(xué)生開(kāi)展有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)?從陶玲老師的《曲邊梯形的面積》這一課的設(shè)計(jì)及授課效果來(lái)看,有以下幾個(gè)特點(diǎn):
(1)教學(xué)起點(diǎn)低且層層深入,教學(xué)環(huán)節(jié)設(shè)計(jì)遵循“最近發(fā)現(xiàn)區(qū)”原則:教師首先從學(xué)生已經(jīng)掌握的“直邊圖形”(三角形、平行四邊形、梯形)的面積出發(fā),到“不規(guī)則的直邊圖形”如何求面積,啟發(fā)學(xué)生可以通過(guò)分割的手段來(lái)轉(zhuǎn)化。接著,又向?qū)W生展示了圓的面積的求法---劉徽的割圓術(shù),再到如何求“曲邊梯形”的`面積,逐步明晰了“分割、以直代曲,無(wú)限逼近”的思想。
(2)利用問(wèn)題串組織教學(xué),使知識(shí)學(xué)習(xí)與問(wèn)題解決統(tǒng)一起來(lái):整個(gè)教學(xué)過(guò)程共設(shè)置了10個(gè)問(wèn)題,并且問(wèn)題環(huán)環(huán)相扣,逐步發(fā)展。從基本轉(zhuǎn)化手段到思想方法的刻意錘煉,較好地兼顧了在教學(xué)過(guò)程中既傳授知識(shí)又培養(yǎng)理性思維能力,使學(xué)生領(lǐng)略到了定積分的基本思想。并且?guī)椭鷮W(xué)生形成了類(lèi)比、轉(zhuǎn)化、歸納等數(shù)學(xué)思想和方法。
(3)較好地體現(xiàn)了多媒體輔助教學(xué)的作用:教師借助多媒體不僅使學(xué)生更直觀地體會(huì)到以直代曲、分割、求和及無(wú)限逼近的思想;體驗(yàn)從特殊到一般、從具體到抽象的探究過(guò)程。而且在求的極限時(shí)借助excel軟件,使學(xué)生更加直觀地感受到了“近似與精確”、“有限與無(wú)限”的思想,較好地處理了求曲邊梯形面積時(shí)“求極限”問(wèn)題的束縛。
(4)發(fā)揮動(dòng)學(xué)生的主體作用,注重練習(xí)反饋和評(píng)價(jià):整個(gè)教學(xué)始終堅(jiān)持以教師為主導(dǎo),以學(xué)生為主體,以問(wèn)題為主線,層層深入地啟發(fā)學(xué)生展開(kāi)積極的思維活動(dòng)。并組織學(xué)生分組討論,合作交流,為學(xué)生創(chuàng)設(shè)了比較充分的探究空間。同時(shí)在“如何以直代曲”、“求過(guò)剩近似值”的類(lèi)比練習(xí)和課堂分組練習(xí)階段注意發(fā)揮評(píng)價(jià)手段的激勵(lì)作用,使師生在交流學(xué)習(xí)成果的過(guò)程中體驗(yàn)到了學(xué)習(xí)的樂(lè)趣。
不足:
1.要總結(jié)在對(duì)曲邊梯形的面積“分割”時(shí),“等分”是為了計(jì)算的方便;其他的分割方法(如橫向分割、梯形分割)也可以求出面積,在這里暫時(shí)不研究。
2.課堂小結(jié)略顯倉(cāng)促,還應(yīng)強(qiáng)調(diào)在“求導(dǎo)數(shù)”和“求曲邊梯形面積”時(shí),都體現(xiàn)了“以直代曲、無(wú)限逼近”的思想(即導(dǎo)數(shù)是以研究直線(割線)的變化來(lái)代替曲線的變化,而曲邊梯形的面積則是從“直邊圖形”面積的變化來(lái)代替曲邊梯形的面積變化)。